Welcome to the RATHERBOARD homepage!
Please scroll down!
Industrial motherboard for the Raspberry Pi!
Designed to be the perfect tool for hobby and advanced projects!

Only on Indiegogo!

Do not miss our Indiegogo campaign start on the 25th March!

Subscribe for our newsletter!



General Purpose IO

User configurable pull-up or pull-down inputs with TVS

Optocoupler Inputs

Optocoupler inputs to protect the RPI inputs, or for other

Optocoupler Outputs

Optocoupler outputs to protect the RPI inputs, or for other

Prototyping Area

Prototyping area with breakout areas to enable you to use

Analog To Digital Converters

ADC channels to measure almost any kind of analog signals.

Digital To Analog Converters

Using DAC channels is an effective solution to create analog

3-Axis Gyro And Accelerometer

This integrated circuit is a MEMS (microelectromechanical

Current-Limited Outputs

These are protected outputs. There is no need for fuses

Precision Temperature Measurement

Serial port (SPI) IC  which was specially developed for

CAN-Communication (Automotive)

CAN (Controller Area Network) came on the market in 1987. It

RS422/485-Communication (Industrial)

Full- or Half-duplex serial communication interface commonly

GPRS-Communication (Mobile)

The RPI has several communication interfaces, still GPRS may

Humidity & Temperature Measurement

Serial communication (I2C) bus protection components, (and

Stereo Audio Output

There are several audio application possibilities and

Integrated Battery Cell With Protection

Uninterruptible operation capability may be required for

Integrated Light-Sensor (Tamper)

You want to know if somebody opens the box while the

GPS Module

What a great feature! It is not a common task to design a



Aquaristics at home, growing plants on an industrial scale

Controlling action cameras, photography equipment

Capturing the perfect moment, or just making lots of shots

Streaming IP-cameras

Streaming IP-cameras to a multimedia server or to the

Home security

The Ratherboard was designed to be easily extendable with

Baby monitor

For most of us there are more important things in our lives

Ornithology cam

Ornithology is one of the most beautiful hobbies and it’s

Weather station

Deciding what to wear in the morning is only one of the many

Multi-axis machines, robotic arms, 3D printers

For this use-case we created a complete demonstration

Weather balloon, and high altitude photography

Have you heard about Dave Akerman’s projects where he

Citylight and outdoor advertising

This particular use-case can be interesting for companies


Ratherboard USE CASES

RB and extension boards

Facebook Profile Pictures

Ratherboard ARTICLES

To be able to support Raspberry Pi based projects by creating an affordable device we have to go into mass production. The higher the quantity, the lower the price. This is why your support is essential in making the Ratherboard successful. This is the power of community and the power of crowdfunding. Please help us grow the Ratherboard community!

Please like and share our articles and the Ratherboard Facebook page! This way you are not only helping the Ratherboard become known by spreading the word, but you also become a member of the Ratherboard community. We are grateful for that, thank you!

The birth of Ratherboard

The birth of Ratherboard: We have all known and used the

The A-Team / meet the First Seven

The A-Team / meet the First Seven:   Gergely Lágler I

RB and RPi advantages

The advantages of the RB and the RPi:   Those 10

What does Budapest mean to us? – The opening scene of our campaign video

What does Budapest mean to us? – The opening scene of our

Everything about the E1, E2, and E3 extension boards

Everything about the E1, E2, and E3 extension boards:  

Greenhouse and home-gardening application

Greenhouse and home-gardening application: To help those who

Ratherboard versus Ratherboard Eco version

Ratherboard versus Ratherboard ECO: In the pictures above

FAQ – Most frequent questions about Ratherboard

Most frequent questions about Ratherboard: Dear Ratherboard

Packaging and shipping

Packaging and shipping   Thanks to our FedEx

3D printer and aquaristics use-case

3D printer and aquaristics use-case: As we have promised



Current tasks of the Ratherboard on our rooftop
  • Streaming live IP camera feed over USTREAM
  • Temperature measurement
  • Ambient light intensity measurement
  • Monitoring the number of GPS “satellites in view” and “satellites in use” for GPS location calculation
  • Sending all measurement data to a safe, cloud based database

Ratherboard Demo Live Stream

On this USTREAM channel you can watch the life of the electronics placed on our office rooftop live. The case without a sticker is one of our previous industrial devices, while the other one is an early prototype of the Ratherboard.

Fun fact: In the upper-right corner of the picture you can see the Gellért-Hill with the Liberty Statue on top. The image is captured by an IP camera connected over Wi-Fi to the Ratherboard, which sends it to USTREAM, again, over Wi-Fi.

Measurement Setup

The Ratherboard is placed on a 35 cm (14 inch) tall stand over a windy part of our office roof, this way we won’t have to worry about snow covering the light sensor for longer periods of time.
The electronics is placed horizontally since this is the optimal angle for the GPS receiver inside.
Only a 12V supply cable was required, all communications are wireless.

Measured Data Of The Last 3 Days

A proof of excellence of the Ratherboard is that developing a demo software took 1/20-th of the time it used to take for our previous industrial electronics, and this one is capable of video streaming too!

Measured Data Of The Last 30 Days

With the Ratherboard, recording longer series of data is a piece of cake. Switching between Fahrenheit and Celsius is only one line of code. Similarly to this demo application where interfacing sensors was very easy, you will have no problem interfacing any kind of input or output hardware to the Ratherboard!

The Ratherboard performs great come rain or shine, all year round!

a Work Tool For A Company
Support To Talented Children
an Award
a Community
the Best Help For a Geek
a Gift For The Loved Ones
a Learning Tool


I love when a plan comes together

John “Hannibal” Smith

Gergely Lagler

Inventor of Ratherboard, CEO of Xtalin Engineering Ltd, Electronics engineer

Hobbies: wood works, DIY hardware, Formula Student, electric go-karting

Szabolcs Veréb

Electronics engineer

Hobbies: hiking, biking, electric go-karting, mechanical engineering projects, industrial metal:)

Dávid Kulcsár

Electronics engineer

Hobbies: Programming, running, body building, hiking

György Tücsök

Campaigner, Member of Innomotion Ltd

Hobbies: Plants, photographic techniques, DIY

Hunor Tamás Dóri

Campaigner, Member of Innomotion Ltd

Hobbies: Biking, discovering new things, travelling

Gábor Sulcz

Campaigner, CEO of AquaShield

Hobbies: Aquaponics, RPI programing

Dániel Várnagy


Hobbies: Formula Student, cooking, biking, DIY, aquaristics, social media

Frequently Asked Questions - FAQ

Dear Ratherboard Community,

You have already sent us several messages on facebook with questions, possible use cases, suggestions and kind wishes, thank You for that! In this section we have collected the most frequent general questions and their answers below.

1.Technical Related Questions
1.The output current of the switching power supplies

Q: “The power requirement of the pi3 is quoted at 2.4A and it’s always better to run a power supply below it’s maximum output. How can the RB fulfill this requirement?”
A: The switching power supplies of the Ratherboard are designed using a 3.5A IC, with the other components also sized above 3Amps. The multifuse on the DC input has a holding current of 3Amps.
The video narration (in the main board’s intro video) calculates with worst cases. With only 7VDC input, and 80% efficiency the output power of the 5V and 3.3V PS should not exceed 16,8W, which means 2Amps on both.
With 12VDC input RB fulfills the 2.5A requirement easily.

2.Battery extension

Q: “How does the Ratherboard deal with possible failures of the input power?”
A: We have defined future extension board types with built-in LiPo battery charger and protection circuit. The battery enables uninterruptible operation, or provides supply voltage for the RPi to perform a proper shutdown.
Alternatively the user can install a supercapacitor or a battery based circuit (on the prototype area on one of the expansion boards) which can store enough charge until the Raspberry Pi shuts down properly. You can make your unique circuits on the prototyping area.
In one of our applications we use an external 12V battery.

3.Why we have chosen to use the Model B versions?

Q: “Great idea, but as it’s designed for industrial applications, wouldn’t using the compute module be a better fit for this?”
A: RB was specially designed for the Model B versions, our goal was to create a useful device for their users. The future of Ratherboard depends on the success of the RB community and the crowdfunding campaign.

4.Powering the RPi using it’s USB-connector

Q: “Why don’t you use the pin header 5V pin instead of the USB connector?”
A: We used the USB-cable-solution because the Raspberry Pi has built-in protection on it’s usb port but it hasn’t on the pin-header. Reading all of the feedbacks we decided to provide a jumper option for the users in the production version. This way everybody will have the option for using the 5V pin instead of the cable.

5.The thermal conductivity of Ratherboard’s enclosure

Lots of You have asked about Ratherboard’s thermal performance, so the question is:
Q: “Will the Raspberry Pi will overheat inside Ratherboard if it is exposed to direct sunlight?”
A: The short answer is that we did not experience overheating problems in our rooftop weather station application during last summer (despite the fact that in Budapest 30-35°C temperature during the day in the shadow is common).

The long answer is quite complicated, let’s see it below!

We have done a crude measurement to estimate the thermal conductivity of Ratherboard’s enclosure. We put a power resistor and an NTC temperature sensor inside the enclosure. These devices were connected to Ratherboard’s external connector header. The power resistor was connected to a bench power supply. The NTC resistance was measured with a multimeter. The ambient temperature was also measured. We noted down the measured values in every 5 minutes.
During the measurement the resistor dissipated 4.2W. After 55-65 minutes the internal temperature became constant (34°C), while the ambient temperature was 23°C. The temperature difference was 11°C and the thermal resistance was 2.63K/W.
After the first measurement we increased the voltage and the resistor dissipated 7.56W. After 55-65 minutes the internal temperature was constant again (42.3°C), while the ambient temperature remained at 23°C which gives a thermal resistance of 2.56K/W.

According to this measurement the thermal resistance of the enclosure is approximately 2.6K/W, which means that if you dissipate 1W inside the enclosure then the internal air temperature will be 2.6°C more than the ambient temperature.

Let’s calculate some more details!
According to the official Raspberry Pi FAQ the Raspberry Pi 3 model B consumes 1.2A at 5V (worst case scenario with lots of external USB devices connected), which gives 6W. Ratherboard’s other components power consumption is negligible compared to this value.
If we assume that Ratherboard’s switching power supply has 80% efficiency, then the total dissipated power inside the enclosure is 7.5W, which means that the temperature will be 20°C more than the ambient temperature.
Let’s say that the ambient temperature is 50°C because of direct sunlight, than the air temperature will be 70°C inside Ratherboard’s enclosure. According to the official Raspberry Pi FAQ the LAN controller is qualified to maximum 70°C temperature. The chip will have higher temperature than the air around it, so in this scenario the chip will probably have higher temperature than the qualification maximum value.

The above example showed that if the Raspberry Pi works very hard and lots of peripherals are connected to it then you should consider to install heatsinks on the Raspberry Pi and install Ratherboard in a shady area. Also note that the Raspberry Pi 3 model B typical bare-board current consumption is less than 500mA, which means only 3.2W dissipation, which means 8.3°C temperature difference.
So Ratherboard’s actual temperature performance is application dependent. For example if you have direct sunlight but lots of airflow then the heat transfer will be much better, hence the thermal resistance will be lower.
We did not experience overheating problems in our rooftop weather station application during last summer as mentioned above. The CPU load was not much (below 10%) and the Ratherboard consumed approximately 0.18A at 12V, which gives 2.2W dissipation. This value is the third of the worst case value (7.5W). We did not installed heatsinks on the Raspberry Pi 3 model B.
Thermal behavior has to be investigated in every electronics design, a Ratherboard application is no exception.

2.General Questions
1.Which countries do you ship to?

Q: “Which countries do you ship to?”
A: Ratherboard will be shipped worldwide.

* Ratherboard packages will be available only on Indiegogo in a couple of weeks for a campaign price with 40% discount. Webshop and on demand order fulfilment will start in 2017.